基于DBO-MLP-SVM算法联合数值模拟的采场结构参数优化研究
DOI:
CSTR:
作者:
作者单位:

西南科技大学

作者简介:

通讯作者:

中图分类号:

基金项目:

四川省自然资源厅科研项目(KJ-2025-029);西南科技大学博士基金(21zx7157)


Research on Optimization of Stope Structure Parameters Based on Artificial Intelligence Algorithms Combined with Numerical Simulation
Author:
Affiliation:

Southwest University of Science and Technology

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    合理的选择采场结构参数对保持采场稳定性和提高矿山经济效益具有重要的意义。针对目前常用的工程类比方法易受主观评价结果影响和单纯基于数值模拟方法进行采场参数优化在应用过程中存在建模操作过程较复杂及工作量较大的不足,提出了基于DBO-MLP-SVM的人工智能采场参数优选方法。通过DBO优化MLP与SVM算法提升其性能,将SVM与MLP结合避免了MLP算法陷入局部解的问题。通过收集相关矿山采场参数与采场稳定性评价分级数据对DBO-MLP-SVM人工智能算法进行训练,以西南某石灰石为例,带入DBO-MLP-SVM人工智能算法得出了不同采场参数得出的采场稳定性分级为:7m时不稳定、大于8m时稳定,并通过FLAC3D数值模拟对采场位移、矿柱变形量和地表沉降进行分析得出了该矿柱尺寸应大于8m,与DBO-MLP-SVM人工智能算法模型结果一致,最后通过与传统方法量化对比,智能协同优化的采场生产能力达到167.44t/d,生产能力增长了51.80%,损失率和贫化率相近,有效兼顾了生产效能与安全保障的双重目标,进一步验证模型优越性。研究结果及方法可为矿山采场参数优化提供借鉴。

    Abstract:

    Rational selection of stope structure parameters is crucial for maintaining stope stability and enhancing mining economic efficiency. This study? addresses the limitations of conventional empirical analogy methods (prone to subjective evaluation biases) and standalone numerical simulation approaches (complex modeling procedures and high computational workloads) in stope parameter optimization. We propose an artificial intelligence-based stope parameter optimization method integrating Dung Beetle Optimizer (DBO), Multilayer Perceptron (MLP), and Support Vector Machine (SVM). The DBO algorithm enhances MLP and SVM performance, while the SVM-MLP hybrid framework mitigates the risk of MLP converging to local optima. Utilizing stope parameter datasets and stability evaluation grades from representative mines, the DBO-MLP-SVM model was trained. A case study of a limestone mine in southwestern China demonstrated that stope stability classification results from the DBO-MLP-SVM model indicated instability at 7m and stability above 8m. FLAC3D numerical simulations further validated these findings by analyzing stope displacement, pillar deformation, and surface subsidence, confirming the critical pillar dimension threshold of 8m. The consistency between AI model predictions and numerical simulation results underscores the method's reliability. Finally, through quantitative comparison with traditional methods, the stope production capacity achieved by intelligent collaborative optimization reached 167.44 t/d, representing a 51.80% increase in production capacity. With comparable loss and dilution rates, this approach effectively balanced the dual objectives of production efficiency and safety assurance, further validating the superiority of the model. This research provides a novel hybrid intelligent framework for data-driven stope parameter optimization in mining engineering.

    参考文献
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-07-04
  • 最后修改日期:2025-08-07
  • 录用日期:2025-08-08
  • 在线发布日期:
  • 出版日期:
文章二维码