基于深度学习模型的矿井回采工作面涌水量多特征预测
DOI:
CSTR:
作者:
作者单位:

1.山东能源集团西北矿业有限公司;2.山东科技大学 能源与矿业工程学院

作者简介:

通讯作者:

中图分类号:

TD 745

基金项目:

国家自然科学(52104203);山东省自然科学(ZR2022ME140);煤炭资源高效开采与洁净利用国家重点实验室项目(2021-CMCU-KF015)


Multi-feature prediction of water inflow in mine extracting face based on deep learning modeling
Author:
Affiliation:

Shandong Energy Group Xibei Mining Co,Ltd,Xi’an Shaanxi

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    矿井工作面回采过程中对含水层产生扰动后易导致工作面涌水量增大,威胁矿井安全生产,若能对工作面涌水量进行超前预测并对预测结果及时做出评判,则可以有效防止水害事故发生。因此,在对现有涌水量预测方法研究现状进行总结分析的基础上,对基于深度学习模型的工作面涌水量多特征预测方法进行了研究,主要流程如下:结合涌水量数据特点及现场实际情况,选择“双含水层水位+微震事件最大发生高度”作为特征数据,建立基于VMD-iCHOA-GRU的矿井回采工作面涌水量多特征预测模型,并设置对照模型,同时对不同数量特征组合下、单目标情况下和不同工作面数据下的模型来进一步验证多特征模型的预测效果。结果表明:VMD-iCHOA-GRU模型的MAE、RMSE、MAPE指标评价结果分别为53.56 m3/d、62.98 m3/d、3.1%,均优于其它对照模型,涌水量预测的精度最高;多特征模型的预测精度均高于单因素模型和其它各类组合的单特征、双特征模型,且特征数据与研究目标间的相关性越强,在提高预测精度方面越有优势;在不同工作面数据下该模型的预测效果均较好,验证了该模型具有相对稳定性和一定扩展性。研究成果为矿井回采工作面涌水量预测提供了新思路和新方法,对矿山防治水工作具有科学的指导意义和参考价值,为矿井安全生产提供了保障。

    Abstract:

    During coal mining extracting face operations, disturbance induced in aquifers can readily lead to increased water inflow at the working face, threatening mine safety. Timely advanced water inflow prediction and evaluation of results can effectively prevent water hazard incidents. Consequently, building upon a summary and analysis of current water inflow prediction methods, this study investigates a multi-feature prediction method for working face water inflow based on deep learning models. The main procedures are as follows: By integrating water inflow data characteristics and on-site conditions, "dual aquifer water levels + maximum height of microseismic events" were selected as the feature dataset. A multi-feature prediction model based on VMD-iCHOA-GRU was established for working face water inflow. Comparative models were also configured. Furthermore, validation tests were conducted under scenarios involving different feature combinations, single-target conditions, and diverse extracting face datasets to verify the multi-feature model's efficacy. Results demonstrate that the VMD-iCHOA-GRU model achieved MAE, RMSE, and MAPE values of 53.56 m3/d, 62.98 m3/d, and 3.1% respectively, outperforming all comparative models with highest prediction accuracy. The multi-feature model consistently surpassed single-factor, single-feature, and dual-feature models in accuracy. Notably, features exhibiting stronger correlation with research targets demonstrated greater advantages in enhancing prediction accuracy. Additionally, the model maintained robust performance across different extracting face datasets, confirming its relative stability and extensibility. This research provides novel methodologies for working face water inflow prediction, offering significant scientific guidance and reference value for mine water prevention and control, thereby safeguarding mine production safety.

    参考文献
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-07-02
  • 最后修改日期:2025-08-02
  • 录用日期:2025-08-07
  • 在线发布日期:
  • 出版日期:
文章二维码