融合BiLSTM与改进减法平均优化器的矿山设备异常检测研究
DOI:
CSTR:
作者:
作者单位:

矿冶科技集团有限公司

作者简介:

通讯作者:

中图分类号:

基金项目:


Anomaly Detection of Mining Equipment by Integrating BiLSTM and Improved Subtractive Average Optimizer
Author:
Affiliation:

矿冶科技集团有限公司

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    研究提出一种基于双向长短记忆网络和改进减法平均优化器的矿山设备异常检测模型,旨在解决传统设备异常检测方法效率低、精度差的问题。该模型通过引入注意力机制动态加权关键特征,结合卷积神经网络提取局部时序特征,并采用引导正则化随机森林进行特征选择,降低数据维度与噪声干扰。此外,改进的减法平均优化器通过混沌映射初始化和黄金正弦步长调整,以提升模型的收敛速度与稳定性。结果显示,在矿山设备多传感器时序数据集和矿山机械故障模拟数据集上,所提模型的准确率分别达到94.17%和95.48%,F1分数分别为93.02%和95.57%,优于现有主流检测模型。实际应用测试中,模型的检测准确率提升至97.32%,平均检测时间仅为0.39s,验证了其高效性与实用性。研究表明,所以模型能够为矿山设备异常检测提供高精度、高效率的解决方案,对保障矿山生产安全具有重要意义。

    Abstract:

    This study proposes a mining equipment anomaly detection model based on bidirectional long short memory network and improved subtraction average optimizer, aiming to solve the problems of low efficiency and poor accuracy of traditional equipment anomaly detection methods. This model dynamically weights key features by introducing attention mechanism, combines convolutional neural network to extract local temporal features, and uses guided regularized random forest for feature selection to reduce data dimensionality and noise interference. Furthermore, the improved subtractive averaging optimizer utilizes chaotic mapping initialization and golden sine step size adjustment to enhance the convergence speed and stability of the model.t. The results show that on the multi-sensor time series dataset of mining equipment and the fault simulation dataset of mining machinery, the accuracy rate of the proposed model reaches 94.17% and 95.48% respectively, and the F1 scores are 93.02% and 95.57% respectively, which is superior to the existing mainstream detection models. In the actual application test, the detection accuracy of the model has been improved to 97.32%, with an average detection time of only 0.39 seconds, verifying its efficiency and practicality. Research has shown that the model can provide high-precision and high-efficiency solutions for abnormal detection of mining equipment, which is of great significance for ensuring the safety of mining production.

    参考文献
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-07-02
  • 最后修改日期:2025-08-08
  • 录用日期:2025-08-11
  • 在线发布日期:
  • 出版日期:
文章二维码