基于改进YOLOv11n-seg的浮选泡沫尺寸提取方法
DOI:
CSTR:
作者:
作者单位:

1.西安建筑科技大学;2.西安建筑科技大学资源工程学院

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Flotation foam size extraction method based on improved YOLOv11n-seg
Author:
Affiliation:

Xi’an University of Architecture and Technology

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对浮选工艺中泡沫尺寸提取困难等问题,提出一种新型改进YOLOv11n-seg的浮选泡沫尺寸提取方法。首先,引进跨尺度特征融合模块(Cross-Scale Feature Fusion Module,CCFM)精进颈部结构,增强模型对于尺度变化的适应性和对小尺度对象的检测能力;其次,添加混合局部通道注意力机制(Mixed local channel attention,MLCA),整合通道信息、空间信息以及局部信息,提升网络的表达能力;最后,引入Unified-IOU损失函数,动态地将模型注意力从低质量预测框转移到高质量预测框,平衡训练速度和检测精度。实验结果表明,相较于传统的分水岭算法和基于深度学习的Mask R-CNN等方法,所提方法在分割精度和实时性方面具有显著优势;与基准模型YOLOv11n-seg相比,优化后模型在精度mAP@0.5和mAP@0.5:0.95上分别提升1.5%和5.3%,召回率提升5.1%,运算量减少11.8%,参数量下降32.1%。该方法具有更快的检测速度和更高的检测精度,满足浮选泡沫尺寸精准提取的需求。

    Abstract:

    Aiming at the difficulty of foam size extraction in flotation process, a new flotation foam size extraction method improved YOLOv11n seg was proposed. Firstly, a Cross-Scale Feature Fusion Module (CCFM) is introduced to refine the neck structure, enhancing the model's adaptability to scale variations and its detection capability for small-scale objects. Secondly, a Mixed Local Channel Attention (MLCA) mechanism is added to integrate channel information, spatial information, and local information, thereby enhancing the network's expressive power. Finally, the Unified-IOU loss function is introduced to dynamically shift the model's attention from low-quality prediction boxes to high-quality ones, balancing training speed and detection accuracy. Experimental results show that, compared to traditional methods such as the watershed algorithm and deep learning-based Mask R-CNN, the proposed method exhibits significant advantages in segmentation accuracy and real-time performance. Compared to the baseline model YOLOv11n-seg, the optimized model achieves a 1.5% and 5.3% improvement in precision mAP@0.5 and mAP@0.5:0.95, respectively, with a 5.1% increase in recall rate, a 11.8% reduction in computation, and a 32.1% decrease in parameter count. This method offers faster detection speed and higher detection accuracy, meeting the requirements for precise extraction of flotation foam size.

    参考文献
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-06-30
  • 最后修改日期:2025-08-06
  • 录用日期:2025-08-07
  • 在线发布日期:
  • 出版日期:
文章二维码