基于数字孪生仿真的大型露天煤矿无人卡车调度优化研究
DOI:
CSTR:
作者:
作者单位:

新疆大学 智能制造现代产业学院

作者简介:

通讯作者:

中图分类号:

TD57

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Optimization of unmanned truck scheduling in large surface coal mine based on digital twin simulation
Author:
Affiliation:

新疆大学

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对大型露天煤矿无人卡车调度方案差、利用率低以及成本高等问题,提出基于数字孪生仿真的优化方法,构建了无人矿卡数字孪生系统框架,借助AnyLogic软件搭建数字孪生仿真模型,实现物理与虚拟空间的实时映射。针对多目标、多约束的无人卡车调度优化问题,建立以运输成本最小化、总运输时间最短化及卡车利用率最大化为目标的数学模型,并设计量子增强粒子群优化算法(QIPSO)进行求解。通过新疆某露天煤矿实例验证,结果表明:相较于传统粒子群算法、改进粒子群算法和遗传算法,QIPSO算法在最大完工时间、总运输成本分别降低11.34%、10.62%以及卡车利用率提升9.14%,收敛速度更快且稳定性更好。数字孪生调度方案较传统方案任务完成时间缩短73分钟,有效提高了运输效率,为露天煤矿无人卡车的智能化调度提供了可行的技术路径和方法支持。

    Abstract:

    Aiming at the problems of poor scheduling scheme,low utilization rate and high cost of unmanned trucks in large surface coal mines,an optimization method based on digital twin simulation is proposed,a digital twin system framework for unmanned mining trucks is constructed,and a digital twin simulation model is built with the help of AnyLogic software to realize real-time mapping between physical and virtual spaces. For the multi-objective and multi-constraint unmanned truck scheduling optimization problem,a mathematical model with the objectives of minimizing the transportation cost,minimizing the total transportation time,and maximizing the truck utilization is established,and the Quantum Enhanced Particle Swarm Optimization Algorithm (QIPSO) is designed to solve the problem. Validated by an example of a surface coal mine in Xinjiang,the results show that compared with the traditional particle swarm algorithm,improved particle swarm algorithm and genetic algorithm,the QIPSO algorithm reduces the maximum completion time,total transportation cost by 11.34% and 10.62% respectively,while increasing truck utilization by 9.14%,and has a faster convergence speed and better stability. The digital twin scheduling scheme shortens the task completion time by 73 minutes compared with the traditional scheme,effectively improves the transportation efficiency,and provides a feasible technical path and methodological support for the intelligent scheduling of unmanned trucks in surface coal mines.

    参考文献
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-06-27
  • 最后修改日期:2025-08-05
  • 录用日期:2025-08-06
  • 在线发布日期:
  • 出版日期:
文章二维码