基于双分支卷积神经网络的刮板输送机轴承故障诊断方法
DOI:
CSTR:
作者:
作者单位:

华阳新材料科技集团有限公司

作者简介:

通讯作者:

中图分类号:

基金项目:

山西省重点研发计划(202102100401015;202102100401017)


Fault diagnosis method of scraper conveyor bearing based on double branch convolutional neural network
Author:
Affiliation:

Huayang New Material Technology Group

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    矿用刮板输送机作为煤矿井下运输系统的关键设备,其轴承在高温、高冲击载荷、粉尘污染和长时间运行等极端工况下,极易发生故障。然而,在复杂工况和多种故障模式下,现有故障诊断方法在特征提取和分类准确性方面仍面临诸多挑战。为此,本文提出了一种基于双分支神经网络的轴承故障诊断方法。首先,利用连续小波变换将一维振动信号转换为二维时频图,以丰富输入数据的时频特征。随后,构建双分支神经网络架构,其中一个分支基于空洞卷积残差模块以增强局部特征提取能力,另一个分支结合全局注意力机制以优化全局特征的学习,最终通过特征融合提升模型的诊断能力。本文在CWRU轴承数据集上和PU轴承数据集进行了试验验证,结果表明,该方法在故障诊断准确率分别达到99.78%和97.94%,整体性能优于DCRB-CNN、GAM-CNN和GAM-ResNet等对比模型,展现出显著的诊断能力和良好的泛化效果。此外,本文还使用煤矿现场数据开展了轴承故障诊断试验,进一步验证了所提方法在强噪声、非平稳工况下的实用性和工程部署价值。该研究为刮板输送机等复杂煤矿设备的智能故障诊断提供了一种高效可靠的深度学习解决方案。

    Abstract:

    As a key equipment in coal mine underground transportation systems, the bearings of mining scraper conveyors are prone to failure under extreme operating conditions such as high temperature, high impact load, dust pollution, and long-term operation. However, under complex operating conditions and multiple failure modes, existing fault diagnosis methods still face many challenges in terms of feature extraction and classification accuracy. To this end, this paper proposes a bearing fault diagnosis method based on a dual-branch neural network. Firstly, the one-dimensional vibration signal is converted into a two-dimensional time-frequency map using continuous wavelet transform to enrich the time-frequency features of the input data. Subsequently, a dual-branch neural network architecture is constructed, where one branch is based on a dilated convolution residual module to enhance local feature extraction capability, and the other branch combines a global attention mechanism to optimize the learning of global features. Finally, the diagnostic ability of the model is improved through feature fusion. Experimental verification is conducted on the CWRU bearing dataset and the PU bearing dataset, and the results show that the accuracy of this method in fault diagnosis reaches 99.78% and 97.94%, respectively. The overall performance is superior to that of comparative models such as DCRB-CNN, GAM-CNN, and GAM-ResNet, demonstrating significant diagnostic capability and good generalization effect. In addition, this paper also conducts bearing fault diagnosis experiments using coal mine field data, further verifying the practicality and engineering deployment value of the proposed method under strong noise and non-stationary operating conditions. This research provides an efficient and reliable deep learning solution for intelligent fault diagnosis of complex coal mine equipment such as scraper conveyors.

    参考文献
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-06-27
  • 最后修改日期:2025-08-08
  • 录用日期:2025-08-08
  • 在线发布日期:
  • 出版日期:
文章二维码