不同温度和含水率下CH4和CO2在煤分子结构中吸附与扩散的模拟研究
DOI:
CSTR:
作者:
作者单位:

内蒙古蒙泰不连沟煤业有限责任公司

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金资助项目(52064043),内蒙古自治区自然科学基金面上项目(2022LHMS05019)、(2022LHMS05020)


Simulation study of adsorption and diffusion of CH4 and CO2 in coal molecular structures at different temperatures and moisture contents
Author:
Affiliation:

Inner Mongolia Mengtai Buliangou Coal Industry Limited Liability Company

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为研究在煤分子结构模型中CH4与CO2吸附与扩散规律。采用巨正则系综蒙特卡洛和分子动力学方法,模拟分析在不同温度、压力与含水率条件下煤分子结构模型中的CH?、CO?吸附与扩散过程。研究结果表明:(1)随着温度升高或含水率提高,CH4与CO2的吸附量均呈现一定幅度下降,而CO?的吸附与扩散能力优于CH?;(2)随压力升高,两种气体的吸附量均增加,但趋于易于饱和,表现出典型的饱和吸附特征;(3)Langmuir拟合结果显示,温度的升高或含水率的提升均导致吸附参数a与b的下降,且CO?的参数值始终高于CH?,表明CO?与煤体之间展现出更高的吸附亲和性;(4)扩散规律显示,升温可显著增强两种气体分子的动能,降低其在煤分子结构模型中的局部富集程度,从而提高扩散性能。CO?在各温度下的均方位移均大于CH?,表明其扩散能力更强以及空间分布更均匀;(5)随着含水率提高,两种气体在煤分子结构模型中的平均质量密度均降低,水分子存在虽不改变气体吸附曲线整体变化,但使气体的吸附饱和点显著降低;(6)当含水率至6.55%时,显著抑制气体扩散行为,水分子填充孔隙并与煤分子作用,导致气体扩散路径受限,削弱了气体迁移程度,从而限制扩散速率。其CH?和CO?扩散系数分别下降至0.063-8 m2/s和1.33×10-8 m2/s。本研究对提升煤层气采收率及优化CO?封存策略提供了理论依据。

    Abstract:

    We employed the grand canonical ensemble Monte Carlo method and molecular dynamics simulations to study the adsorption and diffusion processes of CH? and CO? in a coal molecular structural model under different temperature, pressure and moisture content conditions, in order to investigate the adsorption and diffusion characteristics of CH? and CO? in coals. The results indicate the following: (1) As temperature increases or moisture content rises, the adsorption amounts of both gases decrease to a certain extent; however, CO? exhibits superior adsorption and diffusion capabilities compared to CH?; (2) As pressure increases, the adsorption amounts of both gases increase, but they tend towards saturation and exhibit typical saturated adsorption characteristics; (3) Langmuir model fitting results show that increases in temperature or moisture content lead to decreases in the adsorption parameters a and b. The CO? parameters remain higher than the CH? parameters, indicating a stronger adsorption affinity in coal. (4) Diffusion patterns show that an increase in temperature significantly enhances the kinetic energy of gas molecules, reducing local enrichment in coals and improving diffusion performance. The mean square displacement of CO? at all temperatures is greater than that of CH?, indicating stronger diffusion ability and a more uniform spatial distribution. (5) As the moisture content increases, the average mass density of both gases decreases in the coal molecular structure model. Although the presence of water molecules does not alter the overall trend of the gas adsorption curve, it significantly reduces the adsorption saturation point of the gases; (6) When the moisture content reaches 6.55%, gas diffusion behaviour is significantly inhibited. Water molecules fill the pores and interact with coal molecules, limiting gas diffusion pathways, reducing gas migration extent, and thereby restricting diffusion rates. The diffusion coefficients for CH? and CO? decrease to 0.063-8 m2/s and 1.33×10-8 m2/s, respectively. This study provides a theoretical basis for enhancing coalbed methane recovery rates and optimising CO? sequestration strategies.

    参考文献
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-06-23
  • 最后修改日期:2025-08-05
  • 录用日期:2025-08-06
  • 在线发布日期:
  • 出版日期:
文章二维码