基于IWOA-LightGBM模型的矿挖掘机发动机故障诊断
DOI:
CSTR:
作者:
作者单位:

1.西安市智慧工业感知计算与决策重点实验室;2.西安建筑科技大学

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Intelligent Fault Diagnosis of Mining Excavator Engine Based on IWOA-LightGBM
Author:
Affiliation:

1.Key Laboratory of Smart Industrial Sensing, Computing and Decision-making in Xi'2.'3.an

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对矿用挖掘机发动机故障类别不均衡和中小样本导致诊断精度不足的问题,提出了一种改进的鲸鱼搜索算法优化LightGBM的矿用挖掘机发动机智能故障诊断方法。首先,利用递归特征交叉验证消除法对采集的挖掘机发动机故障数据的特征提取,删除冗余不相关的特征。其次,采用Focal-loss作为LightGBM的损失函数,提出一种改进的鲸鱼算法对LightGBM的超参数寻优,构建新的诊断模型。最后,利用某矿山挖掘机发动机故障数据进行验证,并与常见的集成模型、调优框架和诊断算法进行对比分析。实验结果表明:所提方法诊断性能更好,能达到98.08%的准确率和98.51%的F1分数,可为矿山机械设备的智能诊断提供参考。

    Abstract:

    Aiming at the problems of uneven fault categories of mining excavator engine and small and medium samples leading to insufficient diagnostic accuracy, an improved whale search algorithm optimizing LightGBM for intelligent fault diagnosis of mining excavator engine is proposed. First, the feature extraction of the collected excavator engine fault data is utilized by the recursive feature cross-validation elimination method (RFECV) to remove redundant and irrelevant features. Second, Focal-loss is adopted as the loss function of LightGBM, and an improved whale algorithm is proposed for hyperparameter optimization of LightGBM to construct a new diagnostic model. Finally, the engine failure data of an excavator in a mine is utilized for validation and compared and analyzed with common integration models, tuning frameworks and diagnostic algorithms. The experimental results show that the proposed method has better diagnostic performance and achieves 98.08% accuracy and 98.51% F1 score, which can provide reference for the intelligent diagnosis of mining machinery and equipment.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-29
  • 最后修改日期:2024-11-15
  • 录用日期:2024-11-18
  • 在线发布日期:
  • 出版日期:
文章二维码